Analysis and Implementation of Compression
Techniques for Deep Neural Networks

Nishtha Shah
nsshah15@asu.edu
Arizona State University

Abstract—Deep Neural Networks (DNNs) have achieved im-
pressive results in a variety of applications, including image
recognition, speech recognition, and natural language processing.
However, these models are often large and computationally
expensive, which can be problematic for deployment on resource-
constrained devices such as mobile phones or embedded systems.
While larger models may be necessary for optimal performance
during training, compression techniques are needed to reduce
the size and computational requirements of DNNs for deploy-
ment on low-power devices. In this context, model compression
techniques for DNNs have gained increased attention in recent
years, as there is a growing demand for deploying efficient
and high-performance models on resource-constrained devices.
In this project, we aim to present an analysis of compression
techniques for convolutional DNNs to compare and contrast their
performance against the baseline architectures. We quantify the
performance of compression techniques based on the time taken
to run inference, the memory footprint of the models and the
prediction accuracy. We also present the results of our analysis
on perturbed training data to measure the robustness of these
techniques.

Index Terms—Compression techniques, quantization, binariza-
tion, network pruning, GPUs, inference time

I. INTRODUCTION

Deep Neural Networks (DNNs) have shown remarkable per-
formance in various tasks such as image recognition, speech
recognition, and natural language processing. However, these
models are often very large in size and require significant
computational resources for both training and inference. Dur-
ing training, the primary goal is to extract as much structure
from the given data as possible, and thus models can be
large and computationally expensive. However, in real-world
applications, such as mobile devices or embedded systems,
model size and computational resources become of concern if
the model is to be deployed for inference. Large models can
take up a lot of memory and processing power, making them
unsuitable for deployment in such scenarios. There is often
a trade-off between model size, computational resources, and
accuracy. This makes it challenging to deploy these models on
low-power devices with limited computational resources and
storage capacity.

Therefore, to make deep neural networks more practical for
deployment on resource-constrained devices, model compres-
sion techniques are needed to reduce their size and compu-
tational requirements without compromising their accuracy.
Model compression techniques in deep neural networks have
become increasingly important due to the growing demand for

Aesha Shah
ashah116@asu.edu
Arizona State University

Priyal Padheriya
ppadheri@asu.edu
Arizona State University

deploying efficient and high-performance models on resource-
constrained devices such as mobile phones and embedded
systems.

Model compression techniques aim to address the afore-
mentioned challenges by reducing the size of the model and
the computational cost required for inference without compro-
mising its performance. This involves various techniques such
as pruning, quantization, and knowledge distillation. These
techniques are typically applied in a sequential manner, with
each technique building on the previous one. By using these
techniques, it is possible to achieve significant compression in
DNNs without sacrificing accuracy. This makes it possible to
deploy DNNs on resource-constrained devices such as mobile
phones, embedded systems, and IoT devices.

II. RELATED WORK
A. Network Pruning

Along with the advancement in high-capability DNN mod-
els, a significant amount of research has been conducted on
model compression techniques since they began to require
larger sizes and computational resources. One such technique
is Network Pruning, which involves reducing the size of
a deep learning model by eliminating components such as
neurons, connections, channels, filters, etc. that are deemed
less impactful, resulting in a lightweight model [1].

Early works in the 1990s performed pruning using a second-
order Taylor approximation of the increase in the loss function
of the network when weight is set to zero [2]. In Optimal Brain
Damage, the saliency for each parameter was computed using
a diagonal Hessian approximation, the low-saliency parameters
were pruned from the network, and the network was retrained
[3]. Later in the 2000s, magnitude-based weight pruning
methods have become popular techniques for network prun-
ing [4], [5], [6]. Magnitude-based weight pruning techniques
are computationally efficient, scaling to large networks and
datasets. An automated gradual pruning algorithm proposed in
[7] prunes the smallest magnitude weights to achieve a preset
level of network sparsity. In contrast with the works listed
above, it focuses on comparing the model accuracy and size
tradeoff of large-sparse versus small-dense models.

Recently, several papers have been published demonstrating
better pruning criteria and techniques. For example, [8], pro-
posed a new method for estimating the contribution of a neuron
using the Taylor expansion applied on a squared change in loss
induced by removing a chosen neuron and demonstrated that

even the first-order approximation shows significant agreement
with true importance, and outperforms prior work on a range
of deep networks. While, [9] proposed a new notion of
sparsity for vectors named PQ Index (PQI), which follows
the principles a sparsity measure should obey developing a
new perspective on the compressibility of neural networks
by measuring the sparsity of pruned models and postulated
a hypothesis on the relationship between the sparsity and
compressibility of neural networks. On the other hand, [10]
shows the Influence of Pruning on the Explainability of CNNs.
This expands the scope of pruning beyond compression.

B. Quantization

Quantization has started becoming an important area of
research with the increase in demand for deploying machine
learning models on devices with limited computational re-
sources. In this section, we will be discussing ways in which
we can improve the efficiency of neural networks by quantiz-
ing them and reducing their memory footprint. Quantization
involves reducing the precision of the weights and activations
in a network, typically from 32 bits to 8 bits or fewer, allowing
for faster inference on devices with limited computational
resources, such as mobile phones and embedded systems.

Tandola et al. [11] propose a method for quantizing deep
convolutional networks using integer arithmetic, which can be
more efficient than floating-point arithmetic on some hard-
ware. Courbariaux et al. [12] introduce a binary quantization
method that reduces weights to -1 or 1, greatly reducing the
memory footprint and computational cost of inference. Nagel
et al. [13] propose a technique for training quantized neural
networks, which involves adding noise to the weights and
activations to improve accuracy.

Suvorov et al. [14] investigate mixed-precision quantization,
which involves using higher precision for some weights and
activations and lower precision for others. They demonstrate
that this approach can improve the accuracy of quantized
networks. Alma et al. [16] provide a comprehensive survey of
post-training quantization methods, which involve quantizing
a pre-trained network rather than training it from scratch.

Apart from this, we also learn how different techniques
can be used to reduce the size of neural networks. Some of
the recent papers provide a comparison and analysis of these
techniques and propose ways for enhanced hybrid techniques.
For example, Danilevsky et al. [15] study the effects of weight
pruning and quantization on the size and accuracy of the BERT
language model, concluding that combining both techniques
can further improve the efficiency of the network. On the other
hand, Luo et al. [17] propose a binary convolutional neural
network (BCNN) method for achieving accurate binary con-
volutional neural networks, where both weights and activations
are binarized.

C. Knowledge Distillation

In deep neural networks, the number of parameters can
be very high, making the models computationally expensive
and resource-intensive. Knowledge distillation allows for the

transfer of knowledge from a larger, more complex model
(teacher network) to a smaller, simpler model (student net-
work). [18] This compression of the model size can lead
to faster training times, reduced memory requirements, and
improved computational efficiency.

One of the proposed techniques for knowledge distillation in
deep neural networks called “FitNets” [9] argues that while the
traditional knowledge distillation methods transfer knowledge
from the final layer of the teacher to the student network, this
approach does not make use of the intermediate representa-
tions learned by the teacher network. The FitNets approach
instead focuses on transferring this intermediate knowledge
to the student network. We can also distill knowledge from
multiple “noisy” teacher models instead of a single teacher
model by introducing a regularization term [20] that can lead
to better compression and generalization performance. Or even
introduce a “teacher assistant network” [21] to improve the
process by providing additional guidance about the teacher’s
internal representations.

There are also methods that use only the pre-trained teacher
model’s parameters and do not require any labeled data for the
student model using a method known as “data-free distillation”
[22]. This method enables knowledge transfer to low-resource
settings where labeled data is scarce or expensive to obtain.
Another technique called ”Variational Information Distilla-
tion” (VID) [23] introduces a variational distribution over the
intermediate representations of the teacher network with the
aim of better capturing this correlation. The VID method also
provides a natural way to perform model compression by
eliminating the need for the teacher network during inference,
which can significantly reduce computational requirements.

There is more recent work providing an extensive review
of knowledge distillation and student-teacher learning tech-
niques for visual intelligence [24] and computer vision tasks,
including image classification, object detection, and semantic
segmentation, and discusses the challenges and limitations of
existing methods and proposes new research directions for
further advancements in this field. Overall, we gain valuable
insights and a comprehensive understanding of knowledge
distillation and student-teacher learning in the context of visual
intelligence.

ITII. EXPERIMENTAL SETUP

All the experiments were performed on the Google Colab
GPU. The exact specifications of the GPU are provided in
Table I.

S.No. Specification Detail
1. GPU Nvidia K80/T4
2. Memory 12 GB
3. Memory Clock 0.82 GHz
4. Performance 4.1 TFLOPs
5. CPU Cores 2
6. Disk Space 358 GB

TABLE I. Google Colab GPU Specs

IV. BASELINE SETUP

As discussed in the above sections, we will implement,
analyze and compare 3 different DNN model compression
techniques name Network Pruning, Quantization, and Knowl-
edge Distillation, and evaluate their performance in different
scenarios.

A. Dataset

The baseline dataset selected for comparing the performance
of these 3 techniques is MNIST [25]. MNIST dataset consists
of 28x28 grayscale images, where the training data is com-
prised of 60,000 images and test data of 10,000 images. Fig. 1
shows an example of an image of MNIST dataset.

1
|

00
00

00

00

00 =

oo ([Cll4[2)2]=]
00 - <
0o
00
00
00
00
00

coocococococoao
cooccocococcocn
coococococoocoooao
cooccocococcocn
coococococoocoooao
coccoccococoaoo
coooococoolbuuboo
CoWbo————=—koo
co-—--ypnpooo00
coccoccococoooo
cooccococoocoooo
cooccoccocococoa

r
L

Fig. 1: MNIST dataset sample image

B. Model

In order to compare the performance of 3 different tech-
niques, we will select a baseline model and then compress it
using the selected techniques for analyzing their performances.
Usually, we select any of the standard models like VGG-16,
ResNets, EffiecientNets, MobileNet, etc. as a baseline. For this
project, we will use LeNet-5 [26]. Fig. 2 shows the layer-wise
architecture of the selected baseline model LeNet-5.

x

avg pooI avg pool
5% 5
5= s s=1 s

32x32x1 28X28%6 14X 14 %6 10X10X1L- 5x5x1o

Fig. 2: LeNet-5 model architecture

Also, we fixed the hyper-parameters for a more fair com-
parison. The selected hyper-parameters are as follows:

FC /\

Softmax

1y
2)
3)
4)
5)
6)
7

Framework: TensorFlow 2.x
Optimizer: Adam

Loss: Sparse Categorical Cross-entropy
Learning Rate: default = 0.001
Epochs: 10

Batch-size: 256

Validation Split: 0.1(%)

C. Evaluation Metrics

For evaluating the performance of the mentioned compres-
sion techniques, we will be using the prediction accuracy

of the models on the MNIST dataset for comparison. The
compression techniques will be compared on two metrics:

1) Model size

2) Inference time

This will give us a quantitative measurement of how ef-
ficient the compressed networks are compared to the non-
compressed standard variants.

V. TECHNICAL APPROACH
A. Network Pruning

Network pruning is one of the most popular techniques
for compressing DNNs. As the same suggests, It removes
i.e. prunes redundant or unnecessary parameters to effectively
reduce the computational cost and memory requirements of
deep neural networks and most importantly, while maintaining
their accuracy.

The basic concept of pruning is to identify the parameters
in a neural network that contribute very little to the overall
performance of the network and then remove those parame-
ters. Pruning converts a large model to a storage-friend one
ensuring minimum loss of accuracy. It works on DNNs’ Large-
sparse v/s Small-Dense trade-off. These parameters can be any
part of the DNNs such as individual neurons, connections,
layers, filters, channels, etc. They are explained as follows:

1) Weight Pruning - In this technique, as shown in Fig. 3
the weights of the model are pruned so as to decrease
the size of the model and it is done in such a way that
it does not affect the model performance drastically.

2) Filter Pruning - In filter pruning the filters in the deep
learning model are decreased so as to decrease the
computational and memory requirements of the model.

3) Layer Pruning - In layer pruning, some of the less
important layers of the model are removed (or pruned) to
decrease the model size and computation requirements.

Before pruning

After pruning

Fig. 3: Network Weight Pruning working example

For this project, we have selected Network Weight Pruning.
Weight Pruning uses masking to prune unnecessary weights.
The mask comprises set (1) and off-set bits (0) that decide
wheteher to keep the weight or to remove it as it gets
multiplied by a 0. Fig. 4 shows how the weights are pruned
using masking.

B. Quantization

Quantization is another widely used model compression
technique. It is useful for reducing the precision of weights

1 reshape

weight matrix
pruned

1 weight matrix

flatten

Fig. 4: Weight Matrix getting pruned using Masking

and activations of neural networks. This is used in order to
reduce the memory requirements and computational complex-
ity, making it easier to deploy them on resource-constrained
devices like mobile phones. The main idea behind the concept
is that if we convert floating point numbers of the weights and
inputs into integers, we are going to consume significantly less
memory and the speed of network calculations will increase
drastically. The below Fig. 5 explains how the quantization
process works.

QUANTIZATION

i 1 03 1 3 > index |[in bits]| value
0 [00] -0.6
o1 [SocRoEn =P | . NSRS | o] o
quantization B 0] 0.4
I 0.4 0 3 2 1 3 1] 1.1
32 Bit 2 Bit 32 Bit

Fig. 5: How a model is quantized

Quantization can be challenging as it can introduce errors,
making it necessary to fine-tune the network weights or adjust
the quantization parameters. Quantization can reduce accuracy,
but fine-tuning the network can minimize this loss. However,
different layers may require different precision levels, making
it challenging to find an optimal quantization scheme that
balances accuracy and complexity. Despite these challenges,
quantization has proven effective in reducing the memory
and computational requirements of neural networks without
significantly sacrificing accuracy. Below Fig. 6 shows the
difference between a compressed and a quantized model.

Quantization can be performed during training or after
training. By lowering the values of weights and activations to a
lower bit width. It can be achieved by using various methods
such as uniform quantization, logarithmic quantization, and
hybrid quantization. Depending on the degree of compression
needed, quantization from any of the three types below can be
used:

1) Quantization Aware Training - This is used in prepa-
ration of models by on low-precision hardware during
the training process. It involves simulating the effects
of quantization. It helps to improve the efficiency and
speed of inference while maintaining a high level of

Original model

Ccmpy wnlize
) @]
o o @ °
L 0% .
©

Quantized model

Compressed model

Fig. 6: Compressed model v/s Quantized model

accuracy. The below Fig. 7 explains what happens in
the back when a model is compressed using quantized
aware training.

quantize_wts

layerN-1 La"\"e' —> quantize_acts laverN+1

) |
patch ——{ activation !
norm 1

ey) |

Fig. 7: Compressed model v/s Quantized model

2) Post Training quantization - This type of quantization
is applied to the model after completion of the training
phase. This is a quicker approach but accuracy might
get affected.

a) Static Quantization - This is used for deployment
deep neural networks on devices with limited re-
sources. The quantization range is based on the
representative data set that is to be selected before
deployment. With the help of this, the minimum
and maximum values for each layer in the neural
network is calculated.

b) Dynamic Quantization - This is also a model
compression technique similar to the above one
but this technique allows each batch of the model’s
input to use a different quantization range based on
distribution of the data.

For the purpose of our analysis, we tried compressing
the LeNet-5 baseline model by use of both quantized aware
training and post training quantization. We do quantize aware
training by using quantize_model() function. Then we again
fine tune the model by training it but this time by lesser

number of epochs and again convert it using TFLIlite model. It
is observed that even though quantization aware trained model
produces slightly better results than statically quantized model,
it takes even more time to train this model since it takes into
account the injection of quantized blocks.

C. Knowledge Distillation

The need for neural network compression arises from the
fact that trained models are often larger and slower than
what would be ideal for inference. To address this problem,
knowledge distillation was proposed. Knowledge distillation
is a compression technique for deep neural networks (DNNs)
that involves training a smaller, simpler “student” model to
mimic the behavior of a larger, more complex “teacher” model.
Furthermore, deploying deep learning models on edge devices
such as mobile phones and embedded systems necessitates
the use of lighter models that have lower memory and com-
putational requirements. Smaller models, however, are prone
to underfit large datasets, while bigger models can be too
resource-intensive and have higher inference times, making
them unsuitable for deployment on edge devices with hardware

restrictions.
l_

Teacher Model Student Model
(Pre-trained) (to be trained)

o EX =

Mobile Phone /
Knowledge Distillation

3

]

Embedded
‘ Device

Predictions

Ground Truth

Fig. 8: Knowledge Distillation

The main idea behind knowledge distillation is that the
teacher model has learned to capture important features and
relationships in the training data, and the student model
can benefit from this knowledge by learning to mimic the
teacher’s behavior. The student model learns to capture the
same features and relationships as the teacher model by using
the soft targets i.e. probability distributions produced by the
teacher model for each input example in addition to the
usual hard targets (i.e. true labels). Knowledge distillation
can significantly reduce the number of parameters required
to train a DNN, leading to faster inference and lower memory
requirements.

Temperature is an important hyper-parameter we tune in
knowledge distillation. It controls the smoothness of the dis-
tribution of probabilities generated by the teacher model. A
higher temperature leads to a smoother distribution and can
result in a more generalized model, while a lower temperature

puts more emphasis on ground truth labels. So, we make
observations for multiple values of temperature and its impact
on the performance and evaluation metrics. Thus, the choice
of temperature is a crucial factor in achieving optimal results
with knowledge distillation.

We performed knowledge distillation by training the teacher
model having the same architecture as the baseline model i.e.
LeNet-5 model. Next, we trained the student model including
the predictions obtained from the teacher model. The student
has the architecture as follows:

Layer (type) Output Shape Param #
conv2d_7 (Conv2D) (None, 26, 26, 4) 40
max_pooling2d 7 (MaxPooling (None, 13, 13, 4) 0

2D)

flatten_7 (Flatten) (None, 676) 0
dense_13 (Dense) (None, 16) 10832
dense_14 (Dense) (None, 10) 170

Total params: 11,042
Trainable params: 11,042
Non-trainable params: 0

Fig. 9: Student Model Architecture

However, the student model may not be able to capture all
the necessary information and that might lead to a decreased
accuracy. Therefore, knowledge distillation is often used in
conjunction with other compression techniques, such as prun-
ing and quantization, to achieve optimal compression while
maintaining accuracy.

VI. RESULTS AND DISCUSSION
A. Network Weight Pruning

Network weights can be pruned in 2 fashions, as mentioned
below:

1) Constant
2) Scheduled

Here, Constant Pruning means out of the total number of
weights in each layer a fixed percentage of weights are pruned.
While in Scheduled Pruning, the percentage of weights being
pruned is slowly increased if the accuracy is not being affected.

On pruning the trained baseline LeNet-5 model, it was
found that this Network Weight Pruning technique has high
model compressibility. In addition, the improvement over the
inference latency was very significant. These betterments also
ensured the minimum loss of accuracy. All these can be
concluded from the results shown in Table II.

From Table II, it can be seen that when the baseline model
is pruned using Scheduled Pruning starting from 50% to 80%,
the loss in accuracy is minimum (only 0.015%). But on the
other hand, the space occupied by the model is reduced by
approximately 3 times and the latency for inference time is
reduced almost by 2 times.

Model Sparsity Test Accuracy (%) | Model Size (Mb) | Inference Time (sec)
Baseline 98.85 164.11 4.034
Constant 50% 98.80 101.97 2.800
Constant 80% 98.10 55.28 2.045
Scheduled 50-80%, Final 80% 98.60 55.28 2.643

TABLE II. Network Weight Pruning Results

B. Quantization

As mentioned above we performed quantization on the
model in two different ways - performing training while
simulating the effects of quantization and by compressing the
model with the help of quantization after the training phase is
completed.

The Table III provides a comparison of 3 different model.
The compresses models differs in test accuracy, model size,
and inference time. The baseline model achieved a high test
accuracy of 98.85% but had a relatively large model size of
164.11 MB and a slow inference time of 4.034 seconds. The
quantized model, which underwent post-training quantization,
had a lower test accuracy of 97.25%, but with a significantly
reduced model size of 44.23 MB (approximately 4%) and
a faster inference time of 2.03 seconds (approximately 2.5
times faster). The third model, which underwent quantized
aware training, achieved a test accuracy of 98.32%, with a
smaller model size of 41.17 MB and an even faster inference
time of 1.61 seconds. Both quantized models were able to
significantly reduce the model size and improve the inference
time, while still maintaining a relatively high level of test
accuracy compared to the baseline model. It is worth noting
that combining quantization to a pruned model would produce
better results.

C. Knowledge Distillation

We employ knowledge distillation to train the student model
by utilizing the teacher model’s predictions and the ground
truth. We vary the temperature hyper-parameter to compare the
performances of the student model, considering the changes
in accuracy, model size, and inference time for each model as
seen in Table IV.

Our findings indicate that increasing the temperature pro-
duces a more generalized student model, whereas reducing
the temperature enhances its ability to learn precise decision
boundaries. We determine an optimal temperature value of
around 6 or 7 through experimentation. Additionally, we note
a significant reduction in model size (about 3.5 times lower
than the original baseline model) and inference time (about
half the baseline model’s time) for the distilled model with a
slightly lower but still comparable accuracy to the baseline.
Combining knowledge distillation with other model compres-
sion techniques can improve performance while minimizing
the trade-off between evaluation metrics.

D. Comparison and Discussion

Network weight pruning, quantization, and knowledge dis-
tillation are three model compression strategies that show

potential for lowering model size and speeding up inference
while preserving high test accuracy.

Constant pruning and scheduled pruning were compared
with respect to network weight pruning, and it was discovered
that scheduled pruning with a gradually increasing percentage
of weights being pruned resulted in the least accuracy loss
while achieving appreciable reductions in model size and
inference time. While reducing model size and inference time
by up to 4 times and 2.5 times, respectively, respectively,
quantization, both post-training and quantized aware training,
also produced excellent results. In addition, a relatively high
level of test accuracy in comparison to the baseline model
was maintained. The ground truth and forecasts from a bigger
instructor model were used to train a smaller student model
using knowledge distillation. A significant decrease in model
size and inference time was made while still retaining accuracy
that was comparable to the baseline model by determining the
optimal temperature value to be somewhere between 6 and 7.

Overall, every method has particular benefits and draw-
backs. Combining these methods might improve performance
even more while reducing the trade-off between evaluation
metrics. The table V shows the comparison results for the
three techniques.

VII. CONCLUSION

In conclusion, the size and computational requirements
of Deep Neural Networks (DNNs) have made it challeng-
ing to deploy them on low-power devices. However, model
compression techniques such as pruning, quantization, and
knowledge distillation have emerged as effective solutions to
these challenges. By applying these techniques, it is possible to
achieve significant compression in DNNs without compromis-
ing accuracy, making it feasible to deploy them on resource-
constrained devices.

Our analysis of these compression techniques for CNNs un-
derscores the importance of considering inference time, mem-
ory footprint, and prediction accuracy when assessing their
performance. Constant and scheduled pruning approaches both
have their advantages, with scheduled pruning showing better
results when starting from 50% to 80% pruning. Quantization
also yielded promising results, with quantized aware training
performing better than post-training quantization. Knowledge
distillation can further enhance model compression and gen-
eralization, with an optimal temperature value. Combining
these techniques can result in improved performance while
minimizing the trade-off between evaluation metrics. These
techniques are crucial in developing efficient and faster models
that require less storage, making them ideal for deployment in
resource-constrained environments.

Model Type Test Accuracy (%) | Model Size (Mb) | Inference Time (sec)
Baseline 98.85 164.11 4.034
Quantized Model (Post Training) 97.25 44.23 2.03
Quantized Model(Quantized Aware Training) 98.32 41.17 1.61

TABLE III. Quantization Results

Model Type | Test Accuracy (%) | Model Size (Mb) | Inference Time (sec)
Baseline 98.85 164.11 4.034
T=1 97.69 43.535 1.328
T=3 97.36 43.521 0.949
T=8 95.83 43.594 1.346

TABLE IV. Knowledge Distillation Results

Compression Technique Test Accuracy (%) | Model Size (Mb) | Inference Time (sec)
None (Baseline) 98.85 164.11 4.034
Pruning(Schld.) 98.60 55.28 2.643
Quantization 98.32 41.17 1.61
Knowledge Distillation(T = 1) 97.69 43.535 1.328
TABLE V. Comparison Results
VIII. FUTURE WORK REFERENCES

https://www.overleaf.com/project/645301b2b29ebaf15943b27f [1]
Model compression techniques are crucial for deploying

efficient

and high-performance models on resource-

constrained devices such as mobile phones and embedded
systems. As the demand for such devices continues to grow,
there is a need for further research in this area. Here are
some potential future works that could be explored:

Y

2)

3)

Incorporate these techniques using other datasets such
as CIFAR-10: The efficacy of model compression tech-
niques may vary depending on the dataset used for
training. Future studies could explore the effectiveness
of these techniques on other popular datasets such as
CIFAR-10.

Use a bigger model like ResNet-50 or BERT (model
with more parameters) to test the results’ scale: The
scalability of model compression techniques is another
area that could be explored. While the current study used
LeNet-5 as the teacher model, future works could use
larger models such as ResNet-50 or BERT to test the
effectiveness of these techniques on models with more
parameters.

Combining more than one techniques to obtain more
efficient results: Model compression techniques can be
used in combination with other methods to achieve even
more efficient results. For example, techniques such as
pruning, quantization, and knowledge distillation can be
combined to achieve better results in terms of model size
and computational requirements.

Thus, the field of model compression techniques is an active
area of research, and there is scope for further exploration to
achieve optimal performance on resource-constrained devices.

1y
2)
3)

IX. INDIVIDUAL CONTRIBUTION

Nishtha Shah - Network Pruning
Aesha Shah - Knowledge Distillation
Priyal Padheriya - Quantization

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

D. Blalock, J. J. G. Ortiz, J. Frankle, and J. Guttag, “What is the state
of neural network pruning?” arXiv preprint arXiv:2003.03033, 2020.
Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage.
In D. S. Touretzky, editor, Advances in Neural Information Processing
Systems 2, pages 598-605. Morgan-Kaufmann, 1990.

Hassibi, D. G. Stork, and G. J. Wolff. Optimal brain surgeon and general
network pruning. In IEEE International Conference on Neural Networks,
pages 293-299 vol.1, 1993. doi: 10.1109/ICNN.1993.298572.

Song Han, Huizi Mao, and William J. Dally. Deep compression:
Compressing deep neural network with pruning, trained quantization
and huffman coding. CoRR, abs/1510.00149, 2015a.

Abigail See, Minh-Thang Luong, and Christopher D. Manning. Com-
pression of neural machine translation models via pruning. In CoNLL,
pages 291-301. ACL, 2016.

Sharan Narang, Gregory F. Diamos, Shubho Sengupta, and Erich Elsen.
Exploring sparsity in recurrent neural networks. CoRR, abs/1704.05119,
2017.

Zhu, Michael, and Gupta, Suyog. "To Prune, or Not to Prune: Exploring
the Efficacy of Pruning for Model Compression.” ArXiv, 2017.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, Jan Kautz;
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 11264-11272.

Diao, Enmao, Wang, Ganghua, Zhan, Jiawei, Yang, Yuhong, Ding, Jie,
and Vahid Tarokh. "Pruning Deep Neural Networks from a Sparsity
Perspective.” ArXiv, (2023).

Weber, David, Merkle, Florian, Schoéttle, Pascal, and Stephan Schlogl.
“Less is More: The Influence of Pruning on the Explainability of CNNs.”
ArXiv, (2023).

Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and
Keutzer, K. (2016). Quantizing deep convolutional networks for efficient
inference: A whitepaper. arXiv preprint arXiv:1609.07061
Courbariaux, M., Hubara, 1., Soudry, D., El-Yaniv, R., and Bengio, Y.
(2016). Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In Advances in neural information processing
systems (pp. 4790-4798)

Nagel, M., Weber, M., and Wohlmayr, M. (2019). Quantized neural
networks: Training neural networks with low precision weights and
activations. In 2019 IEEE International Conference on Image Processing
(ICIP) (pp. 2050-2054). IEEE.

Suvorov, D., Iashin, V., and Vetrov, D. (2020). Mixed-precision quanti-
zation for end-to-end training of neural networks. In Advances in Neural
Information Processing Systems (pp. 15027-15036).

Danilevsky, M., Karpov, A., Mashikhin, A., and Torgashev, D. (2021).
Compressing BERT: Studying the effects of weight pruning and quanti-
zation on the model size and accuracy. arXiv preprint arXiv:2102.07973.
Alam, M., Najeeb, S., and Zhang, M. (2021). Post-training quantization
for deep neural networks: A survey. arXiv preprint arXiv:2107.04125.

[17]

[18]
[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]

Luo, W., Wu, C., Qian, C., and He, X. (2021). Towards accurate
binary convolutional neural network. In Proceedings of the 29th ACM
International Conference on Multimedia (pp. 540-548).

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the Knowledge
in a Neural Network. arXiv preprint arXiv:1503.02531.

Romero, A., Ballas, N., Kahou, S. E., and Bengio, Y. (2015). Learning
from teacher networks. arXiv preprint arXiv:1503.00075.

Kim, Y., Kim, C., Kim, S., and Kim, J. (2016). Deep model com-
pression: Distilling knowledge from noisy teachers. arXiv preprint
arXiv:1610.09650.

Zhang, H., Cui, Y., Neumann, G., and Chen, W. (2018). Improved knowl-
edge distillation via teacher assistant. arXiv preprint arXiv:1802.00179.
Li, J., Li, W,, and Talwalkar, A. (2018). Data-free learning of student
networks. arXiv preprint arXiv:1808.03856.

Aghdam, S. R., Golkari, S., and Huang, Y. (2018). Variational informa-
tion distillation for knowledge transfer. arXiv preprint arXiv:1806.05594.
Wang, L., and Yoon, K. J. (2020). Knowledge Distillation and Student-
Teacher Learning for Visual Intelligence: A Review and New Outlooks.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 1-1.
Chen, F., Chen, N., Mao, H., and Hu, H. (2018). Assessing four Neural
Networks on Handwritten Digit Recognition Dataset (MNIST). ArXiv.
/abs/1811.08278

Berngardt, O. I. (2023). Improving Classification Neural Networks by
using Absolute activation function (MNIST/LeNET-5 example). ArXiv.
/abs/2304.11758

