
Plant Disease Classification using Machine
Learning techniques

Aesha Sandeep Shah
ashah116@asu.edu

Abstract—Pest and disease invasion are the two main
causes of crops being partially or completely destroyed,
which significantly affects crop productivity and ultimately
results in food poverty. Additionally, the majority of
underdeveloped nations have very little awareness of such
diseases and pest management or control. One of the few
important reasons that contributes to food shortage is the
presence of toxic pollutants, inadequate disease control, and
harsh climate change. Diseases of plants are physiological
anomalies. When a plant becomes afflicted with a disease, it
will start to show particular symptoms. These signs include
physical characteristics that gradually change and become
observable to the unaided eye. Some symptoms include wilt
leaf spots, yellow patches, blight, and rot. Our main aim is
to use machine learning and image augmentation
techniques to identify the infected plant and the
corresponding disease by observing its morphology.

Keywords— Machine Learning, Convolutional Neural
Network, ResNet50

I. INTRODUCTION
Thanks to modern technology, it is now possible to

produce enough food to meet demand on a global scale. But
a variety of problems—including plant diseases, climate
change, etc.—remain a threat to food security. Accurately
identifying plant diseases continues to be a challenge for
farmers.A plant that is afflicted displays several obvious
illness symptoms, such as form, size, dryness, and wilting.
These are very useful for figuring out how healthy the plant
is. Deep learning's most recent developments in computer
vision have made it possible to diagnose plant illnesses.

In this project, we will apply image processing instead of
human intervention to detect plant diseases, which will save
time and effort. It will provide a low-cost alternative to
disease control strategies that could otherwise waste
resources and prevent further plant losses. The farmer will
find it easier to monitor symptoms and identify ill or
unhealthy plants on the farm using our method. As a result,
plant disease will be diagnosed. Our major goal is to create
a model that recognizes a leaf in a photograph and then
classify it in accordance with the appropriate disease
category.

The implemented baseline model relies on the idea of
transfer learning. Different image processing algorithms are
utilized for plant weight calculation and disease diagnosis.
In order to change the weight of images that are kept in a
learning database, back propagation is used. In order to
enhance the plant disease identification methodology, we
tested out two other experiments by adding image
augmentation in one and further modifying the architecture
of our model for the second experiment.

We observe and analyze the performance and results of
each of these models and compare them and conclude which
of these experiments were successful and which ones failed.

II. DESCRIPTION OF SOLUTION

A. Dataset
For carrying out this experiment, we use the PlantVillage

dataset [4]. It contains healthy and diseased plant images of
Pepper Bell, Potato and Tomatoes. We have segregated
healthy plants and also separate classes for different kinds of
some common diseases for each plant.

We download this dataset from Kaggle. It is divided into
15 different classes each containing images of healthy and
diseased leaves captured in a controlled environment. There
are a total of around 20,600 images of resolution fixed at
224 x 224 pixels.

B. Baseline Model and Evaluation Metrics
The current baseline model uses the concept of Transfer

Learning. Transfer learning (TL) concentrates on preserving
knowledge obtained while solving one problem and
applying it to another that is unrelated but nonetheless
similar. [2] The baseline model makes use of a pretrained
ResNet50 model with 48 Convolution Layers, 1 MaxPool
Layer, and 1 AveragePool Layer. With an input size of 224
× 224 x 3, we feed the image into its array representation. In
order to use ResNet-50's effective categorization in our
model, we also retrained the model and added more layers at
the end. The architecture of our base model is shown in the
following diagram..-

Fig.1. Baseline Model Architecture
The baseline neural network architecture consists of

several layers and each of these layers play a significant
role. We summarize each layer of the model as follows -



Table 2. Baseline Model Layer Summary

As indicated below, each of these layers and their
significance can be understood -

1) ResNet50
The pretrained model ResNet is the short for Residual

Network. It supports Residual Learning. The 50 in
ResNet50 also denotes the 50 layers of the network. The
ResNet50 network, one of the most widely used network
architectures in computer vision, was incorporated into our
baseline model primarily due to its superior performance
when compared to other popular deep learning architectures
for image classification, such as CNN, GoogLeNet,
MobileNetV2, etc. Additionally, ResNet50 has been cited in
numerous academic articles as being the top model for plant
disease detection and one of the Top 4 Pre-trained models
for image classification.

2) Flatten
For a typical neural network technique, the flatten layer

is used to transform a multi-dimensional array into a
1-dimensional flatten array, or single-dimensional array. As
seen, the flatten layer reduces the ResNet50 network's
3-dimensional output of 7,7,2048 values to a 1-dimensional
array of 100352 values.

3) Dense
The Dense layer is also known as a fully connected layer

since it is fully or deeply connected to its preceding layer.
Typically, matrix vector multiplication is done in a dense
layer of the neural network to change the output's
dimension.

4) Dropout
To prevent overfitting, we add the dropout layer between

the two thick layers. Typically, the dropout layer is put
between the fully linked layers and after. This is due to the
fact that fully connected layers typically contain more
parameters, which forces them to overly self-adapt, leading
to overfitting.

For the evaluation metrics, we have used confusion
matrix and accuracy as metrics to evaluate our model and
will use it further as a means to compare the other two
improved models with the baseline model. We obtained a
validation accuracy of 90.13% from our baseline model.
Thus, it performs well enough. However, it can be improved
further by the experiments that follow later.

Fig.3. Accuracy graphs of baseline model

We can see from the curves above that when more data
is introduced into the model, accuracy rises and validation
gets better—up to a point. Additionally, the fact that the
validation curve is uneven suggests that the confusion
model has difficulty predicting specific labels because
several disease classes have comparable symptoms.

Therefore, the baseline model's existing architecture
proves to be a good model, but we can try to make it even
better by adding more layers and doing image augmentation.

III. WORKING AND FAILED EXPERIMENTS

We separate the data into training and testing parts. 80%
of the dataset is made up of training data, and the remaining
20% is composed of testing data. In both the training and
testing datasets, the images are categorized into 15 distinct
folders, each of which corresponds to a class, precisely as
they were in our original data. Due to the limited computing
capabilities of our system, we will only be using a fraction
of the original data. We have 300 pictures in each folder,
which is denoted by N. This quantity may be altered to
obtain better results depending on the machine's
computational power.

The process of dimensionality reduction, which divides
and reduces an initial collection of raw data into smaller,
easier-to-manage groupings, includes feature extraction as
another crucial step. Each of the experimental models'
image sizes have also been changed. We used
LabelBinarizer on the image labels to classify the classes.

We increased the dataset by incorporating images
augmentation in order to strengthen the baseline model even
further. We did this since we saw that when we give the
model new data, both the validation and the model accuracy
improve. We used a variety of data augmentation
techniques, including rotation, shifting, zooming, and
flipping, to diversity the image collection. It has been
discovered that including augmented photos in a model lets
it learn characteristics from multiple sections of an image
more effectively, increasing performance accuracy on test
data.

The subsequent layers received 25% dropout, maximal
pooling, and batch normalization. We anticipated seeing
improved accuracy outcomes by putting the aforementioned
improvisations into practice, expanding the basic model
with more layers, or creating a whole new model from
scratch. We also plan to employ the Adam Optimizer for our



training because it is known to function more quickly and
deliver better global minimum convergence than the other
optimization algorithms.

To summarize, we implemented two different
experimental models building on top of the above
mentioned baseline model. The experimental models are:

1) Adding image augmentation to baseline model
To add variation to our training dataset, we introduced

picture augmentation to our baseline model. The definition
of image augmentation and the variety of augmentation
techniques that can be used on the dataset will be covered
first.

The technique of introducing minor modifications to the
data in order to increase the initial dataset is known as
image augmentation. Machine learning techniques are used
to artificially create new data points. Numerous changes can
be made to the image by using augmentation techniques.

For our model, we have applied the below mentioned
changes to our original data images:

a) Rotation_range: 25
b) Horizontal_flip: True
c) Height_shift_range: 0.1
d) Width_shift_range: 0.1
e) Zoom_range: 0.2
f) Shear_range: 0.2
g) Fill_mode: "nearest"

The architecture for this model is kept the same as that
of the baseline model.

We trained the model using the augmented data as
mentioned above and were able to get the following results:

● Best epoch

● Final accuracy

We view this as a successful experiment given that the
model outperforms the baseline model (93% accuracy).. We
will compare and analyze the results further in the later
section.

2) Adding image augmentation and Modifying
network architecture of the baseline model.

Additionally, we explore by altering the baseline model's
design and including new layers. Following is an
explanation of the various layers we added throughout the
experimenting phase -

a) Conv2D

A 2 dimensional convolutional layer is called Conv2D.
The parameters of these layers contain a set of K learnable
features, or kernels. These filters are rectangular in design
because of their height and width. This layer's primary
function is to generate a convolution kernel that is wound
with the input supplied to the layer and aids in the
production of a tensor of outputs. Using this layer, the
images are convolutioned into several images with
activation functions.

b) Activation

These layers are a fundamental component of the neural
network architecture and often represent the activation
functions. These layers are typically not explicitly
mentioned in the network diagrams because it is expected
that they are always there as part of the architecture. A
nonlinear activation function, such as ELU, ReLU, or Leaky
ReLU, is applied after each convolutional layer. Due to the
element-wise application of the activation function, the
output dimension of an activation layer is always the same
as the input dimension.

c) BatchNormalization

Before sending an input volume to the following layer of
the network, batch normalization layers are utilized to
normalize the activations. [2] It enables the network's layers
to each learn more effectively and independently. We utilize
it to perform regularization as a safeguard against
overfitting and to normalize the output of the layer before it.

d) MaxPooling

It is common practice to reduce input size by using the
pooling layers. To reduce the inputs' spatial size, these
layers are typically placed in between 2 successive
convolutional layers. As a result, less parameters are needed
in the network, which also cuts down on computation time
and expense. Additionally, pooling layers aids in preventing
overfitting. One of the most popular pooling layers is
MaxPooling.

We experimented with the number of each type of layer
we added to our neural network, the sequence in which we
added these layers, and the number of layers overall. As a
result, we tried a variety of various layer combinations.
However, these combinations were ineffective, and their
performance was worse than that of our baseline model. The
following diagram illustrates one possible arrangement of
layers in a neural network or neural network architecture. -

Model: "sequential"
_________________________________________________
Layer (type) Output Shape Param #
=====================================

conv2d (Conv2D) (None, 225, 225, 32) 896

activation(Activation) (None, 225, 225, 32) 0

batch_normalization (BatchN (None, 225, 225, 32) 128

ormalization)

max_pooling2d (MaxPooling2D (None, 75, 75, 32) 0

dropout (Dropout) (None, 75, 75, 32) 0

conv2d_1 (Conv2D) (None, 75, 75, 64) 18496

activation_1 (Activation) (None, 75, 75, 64) 0

batch_normalization_1 (Batc (None, 75, 75, 64) 256

hNormalization)

conv2d_2 (Conv2D) (None, 75, 75, 64) 36928

activation_2 (Activation) (None, 75, 75, 64) 0

batch_normalization_2 (Batc (None, 75, 75, 64) 256

hNormalization)

max_pooling2d_1 (MaxPooling (None, 37, 37, 64) 0

2D)

dropout_1 (Dropout) (None, 37, 37, 64) 0

conv2d_3 (Conv2D) (None, 37, 37, 128) 73856



activation_3 (Activation) (None, 37, 37, 128) 0

batch_normalization_3 (Batc (None, 37, 37, 128) 512

hNormalization)

conv2d_4 (Conv2D) (None, 37, 37, 128) 147584

activation_4 (Activation) (None, 37, 37, 128) 0

batch_normalization_4 (Batc (None, 37, 37, 128) 512

hNormalization)

max_pooling2d_2 (MaxPooling (None, 18, 18, 128) 0

2D)

dropout_2 (Dropout) (None, 18, 18, 128) 0

flatten (Flatten) (None, 41472) 0

dense (Dense) (None, 1024) 42468352

activation_5 (Activation) (None, 1024) 0

batch_normalization_5 (Batc (None, 1024) 4096

hNormalization)

dropout_3 (Dropout) (None, 1024) 0

dense_1 (Dense) (None, 15) 15375

activation_6 (Activation) (None, 15) 0

=====================================
Total params: 42,767,247
Trainable params: 42,764,367
Non-trainable params: 2,880

Table 4. Modified Network Model Layer Summary

We incorporate an Image Augmentation technique into
our model in addition to these. The following findings are
seen if we raise the batch size to 36 and adjust the image
size from 200 x 200 to 225 x 225.

● Best epoch

● Final accuracy

As the model doesn't perform with a higher accuracy
than the baseline model, we consider this experiment a
failure. The final accuracy of this experimental model is
only 74%. We will compare and analyze the results further
in the next section.

Shown below is a sample image picked out randomly to
test and compare all three of our models.

Fig.5. Testing ‘bell_pepper_healthy’ on the Baseline Model
with Image Augmentation

IV. OBSERVATIONS AND ANALYSIS OF RESULTS

After examining the data to support our opinion about
the best functioning model, we thus come to the conclusion
that the model that was trained with Image Augmentation on
top of the baseline model is the best working experiment.
The results did not much improve when we changed the
architecture, therefore we came to the conclusion that the
experiment was unsuccessful.

Table 5. Accuracies of each model

Fig. 6. Graphs for accuracies of each model

We can derive the following conclusions based on the
observations from the graphs and performances of these
models -

1. The baseline model performs well on the training
data, with a training accuracy of 98.2%. It does not
do as well on the validation data, where it only
offers an accuracy of 90%. Although it's not
horrible, it could do better.

2. This leads us to our working experiment where we
show that adding image augmentation to our
baseline model improves accuracy on the
validation set. With a validation accuracy of
93.11% and a training accuracy of 95.3%, we
observe a strong balance in which our model
successfully executes on both training and test
datasets. The graph also demonstrates the excellent
accuracy and strong correlation between the
training and validation accuracies. The matching
loss values, which are similarly low, provide us our
ideal model.

3. The training accuracy for the model with the
changed architecture and image augmentation can
reach up to around 90%, despite the fact that the
final validation accuracy is only up to about 74%.



The graph displays the model's high level of
instability on the validation data. This can be a sign
that the model tries to fit the data too closely and
will have trouble using data that isn't observed.

Fig. 7. Graphs for training and validation loss of each model

Furthermore, On testing our models on two randomly
picked image from the dataset, we make the following
observations that support our conclusion and analysis:

1. One of the two test photos is correctly classified by
the baseline model, but the other is not.

2. Our conclusion that the baseline model with Image
Augmentation is a better model is supported by the
fact that it accurately classifies both test images.

3. These test images can also be successfully
classified using the model with updated
architecture and augmented images. Due to the low
validation accuracy of this model, we cannot
depend on it to constantly provide us with correct
predictions.

V. INDIVIDUAL CONTRIBUTION

In addition to selecting and researching about the
topic and datasets, I mainly worked on the modified
network architecture of the Convolutional Neural
Network. I implemented this experimental model to
check if performance is improved as against the baseline
model.

I split the data into training and testing data: 80

and 20% respectively. I took N = 100 images per class
due to computational complexity and performed image
augmentation on the obtained data in order to introduce
variety in the data with an objective of gaining better
performance of this trained model. With an aim to
optimize the performance of this model, I implemented
the following two measures: 1) Image Augmentation
and 2) Network Architecture Modification by
introducing more powerful layers viz. MaxPooling and
BatchNormalization.

These layers are introduced in various
combinations in a recurring manner of the CNN. I
recorded a stark contrast between the accuracies of this
and the baseline model. This trained model recorded a
mere accuracy of 89.69% as against the baseline’s high
accuracy of 98.23%. Moreover, the model fails to
surpass the validation accuracy of the baseline model as
well. In fact, it performs very poorly with a recorded
accuracy of only 73.82%.

Furthermore, the graph of the validation loss
seems to be unstable therefore, this might be a potential
indicator of overfitting which could imply that the
model is overly complicated. Thus, it can be concluded
that this was a failed experiment. Potential steps to fix
this could include testing out other possible
combinations in the convolutional network.

This experiment helped me gain deeper insight and
understanding of Convolutional Neural Networks and
how to compare and analyze the factors that impact the
performance patterns of multiple models.

VI. TEAM MEMBERS

The project was a team effort and involved the
following team members:
1. Aesha Sandeep Shah
2. Priyal Jayvijaysinh Padheriya
3. Shrutwa Sandip Shah

VII. REFERENCES

[1] Kansal, A., Arora, N., Maurya, T., Agarwal, V. K., & Tyagi, B. (1970,
January 1). [PDF] detection of plant diseases using resnet50 v2:
Semantic scholar. [PDF] Detection of Plant Diseases using ResNet50
V2 | Semantic Scholar. Retrieved December 2, 2022, from
https://www.semanticscholar.org/paper/Detection-of-Plant-Diseases-u
sing-ResNet50-V2/4e4fc02c2ce4b258b378d1946c36e3bbaf83e83b

[2] Rosebrock, A. (2021, June 24). Convolutional Neural Networks
(CNNs) and layer types. PyImageSearch. Retrieved December 2,
2022, from
https://pyimagesearch.com/2021/05/14/convolutional-neural-network
s-cnns-and-layer-types/

[3] https://riteshajoodha.co.za/sitepad-data/uploads//2022/01/Charlotte-S
avage-CAM-Final-Report.pdf

[4] Emmanuel, T. (2018, October). PlantVillage Dataset, Version 1
[5] Aesha Sandeep Shah, “CSE_598_Project_Group39” in CSE 598 –

Introduction to Deep Learning 2022.


